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The Alkyl-BIAN ligands tert-Butyl-BIAN and 1-Adamantyl-

BIAN have been synthesized and their structures have been

determined by single-crystal X-ray diffraction along with that

of the ZnCl2 complex of tert-Butyl-BIAN.

The bis(arylimino)acenaphthene (Aryl-BIAN) class of ligands

(Chart 1) can be construed as arising from the fusion of

naphthalene and 1,4-diaza-1,3-butadiene (DAB) moieties. One of

the consequences of this hybrid character is that Aryl-BIAN

ligands can function as both electron and proton sponges. Not

unexpectedly, this desirable and versatile combination of properties

has attracted the attention of the catalysis community and, as a

consequence, several Aryl-BIAN-supported transition metal com-

plexes have emerged as catalysts for enabling a variety of

important chemical transformations.1 Given the foregoing, in

conjunction with the almost ubiquitous use of the tert-Butyl-DAB

ligand in p-, d- and f-block chemistry,2 it is at first blush surprising

that e.g. the analogous tert-Butyl-BIAN ligand remains unre-

ported. Some of the obstacles confronting the synthesis of Alkyl-

BIAN ligands have, in fact, been addressed previously. Thus

Ragaini et al.3 correctly drew attention to the ring strain in the five-

membered BIAN ring that is due to the fact that all five carbon

atoms adopt sp2 hybridization. To thwart the tendency towards

the relief of ring strain via isomerization, these authors adopted the

strategy of employing nitrogen substituents with even more strain

than the C5 BIAN ring itself, namely cyclopropyl groups. The

same authors attributed their failure to prepare tert-Butyl-BIAN

(1) and 1-Adamantyl-BIAN (2) by the classical route of treating

acenaphthenequinone with the respective primary amine or via a

transimination procedure to insurmountable steric effects.3

Moreover, attempts to prepare BIAN ligands with smaller alkyl

groups such as n-Bu and PhCH2 were forestalled by the presence

of a-hydrogen atoms which resulted in isomerization and

subsequent decomposition.3,4 Herein we describe convenient

syntheses of 1 and 2 using iminoalane and aminoalane transfer

reagents, respectively. Both new Alkyl-BIAN ligands have been

structurally authenticated, as has the ZnCl2 complex of 1.

Amino-5 and iminoalanes6 have been employed successfully for

the transfer of imido moieties. Specifically, it has been shown that

aminoalane dimers of the type [Me2Al-m-N(H)R]2 (R = fluor-

oaryl)5 are effective reagents for the conversion of CLO into

CLNR functionalities. Accordingly, our first attempt to prepare 1

involved the treatment of acenaphthenequinone with an excess of

[Me2Al-m-N(H)(t-Bu)]2 (3)7 in toluene solution. Following hydro-

lytic work-up of the reaction mixture and purification, 4 was

isolated in >50% yield.

However, compound 4 was identified as an imino–amino

derivative rather than the desired diimine on the basis of NMR

and mass spectroscopic data.8 Assuming that the source of the Me

group in 4 is the aminoalane 3,9 the obvious next step was to

employ a transfer agent that lacked Al–Me groups. The

iminoalane cubane [HAl(m3-N-t-Bu)]4 (5)10 seemed ideal for this

purpose and treatment of acenaphthenequinone with three

equivalents of 5 in toluene solution afforded the desired tert-

Butyl-BIAN ligand (1) as a yellow crystalline solid in yields of 5

0–80% (Scheme 1). Satisfactory spectroscopic data were acquired

for 111 and the molecular structure was determined by single-

crystal X-ray diffraction.12 An interesting feature of the structure

of 1 (Fig. 1) is the fact that it exists in the (E,Z) isomeric form in

contrast to Aryl-BIAN ligands4,13 which, with one exception,14
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exist as (E,E) isomers in the crystalline state.15 These differences in

isomeric preference evidently arise from a complex interplay of the

steric demands of the imino substituents, lone pair–lone pair

repulsions between imino-nitrogen lone pairs and crystal packing

effects.

In contrast to the reaction of acenaphthenequinone with

[Me2Al-m-N(H)(t-Bu)]2 which gave 4, the corresponding reaction

with five equivalents of [Me2Al-m-N(H)(1-Ad)]2 (6)17 in toluene

solution afforded, following work-up of the reaction mixture,

>50% yields of yellow, crystalline 1-Adamantyl-BIAN (2)

(Scheme 1). Compound 2 was characterized by spectroscopic

methods11 and X-ray analysis.12 Like 1, the 1-adamantyl analogue,

2 exhibits the (E,Z) isomeric preference in the crystalline state

(Fig. 2). The metrical parameters for 1 and 2 are very similar to,

but distinguished from, those of Aryl-BIAN ligands with (E,E)

geometries. In contrast to the latter, there is considerable disparity

in the C–N–C and N–C–C bond angles at N(1) and N(2) in 1 and

2 (see Fig. 1 and 2 captions). Finally, the ZnCl2 complex of tert-

Butyl-BIAN (7) was prepared in y90% yield via the reaction of 1

with ZnCl2 in THF solution, followed by recrystallization from

MeCN solution. An X-ray crystallographic study of 712 (Fig. 3)

revealed that, despite the (E,Z) to (E,E) isomeric conversion that

accompanies ligation to the zinc atom, the BIAN bond distances

for 7 are virtually identical to those of the free tert-Butyl-BIAN

ligand.

In conclusion, we have prepared and structurally characterized

Alkyl-BIAN ligands that are analogous to the well-known DAB

ligand class. Given the differences in stereoelectronic properties of

alkyl and aryl substituents, it is anticipated that the new Alkyl-

BIAN ligands will find wide use in coordination chemistry and

catalysis.
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Fig. 1 View of the tert-Butyl-BIAN ligand (1) showing the atom

numbering scheme and thermal ellipsoids at 50% probability (hydrogen

atoms omitted for clarity). Selected bond distances (Å) and angles (u):
C(1)–N(1) 1.282(3), C(12)–N(2) 1.274(4), C(1)–C(12) 1.551(4), C(1)–C(2)

1.496(4), C(2)–C(11) 1.426(4), C(11)–C(10) 1.407(4), C(10)–C(12) 1.481(4);

C(13)–N(1)–C(1) 126.9(2), N(1)–C(1)–C(12) 118.8(2), C(1)–C(12)–N(2)

135.3(3), C(12)–N(2)–C(17) 129.5(3), C(2)–C(1)–C(12) 106.2(2), C(1)–

C(12)–C(10) 105.3(2), C(12)–C(10)–C(11) 108.7(2), C(10)–C(11)–C(2)

112.8(2), C(11)–C(2)–C(1) 106.9(2).

Fig. 2 View of the 1-Adamantyl-BIAN ligand (2) showing the atom

numbering scheme and thermal ellipsoids at 50% probability (hydrogen

atoms omitted for clarity). Selected bond distances (Å) and angles (u):
C(1)–N(1) 1.270(4), C(12)–N(2) 1.272(4), C(1)–C(12) 1.567(4), C(1)–C(2)

1.516(4), C(2)–C(11) 1.422(4), C(11)–C(10) 1.401(4), C(10)–C(12) 1.491(4);

C(13)–N(1)–C(1) 127.8(3), N(1)–C(1)–C(12) 118.5(3), C(1)–C(12)–N(2)

136.2(3), C(12)–N(2)–C(23) 130.3(3), C(2)–C(1)–C(12) 105.1(3), C(1)–

C(12)–C(10) 105.1(3), C(12)–C(10)–C(11) 109.1(3), C(10)–C(11)–C(2)

113.1(3), C(11)–C(2)–C(1) 107.4(3).

Fig. 3 View of (tert-Butyl-BIAN)ZnCl2 (7) showing the atom numbering

scheme and thermal ellipsoids at 50% probability (hydrogen atoms and

CH3CN of crystallization omitted for clarity). Selected bond distances (Å)

and angles (u): Zn(1)–N(1) 2.083(3), Zn(1)–N(2) 2.078(3), Zn(1)–Cl(1)

2.219(1), Zn(1)–Cl(2) 2.225(1), C(1)–N(1) 1.278(4), C(12)–N(2) 1.267(4),

C(1)–C(12) 1.549(5), C(1)–C(2) 1.496(5), C(2)–C(11) 1.414(4), C(11)–C(10)

1.417(5), C(10)–C(12) 1.477(5); N(1)–Zn(1)–N(2) 81.42(11), Cl(1)–Zn(1)–

Cl(2) 118.44(4), C(13)–N(1)–C(1) 125.7(3), N(1)–C(1)–C(12) 117.0(3),

C(1)–C(12)–N(2) 116.8(3), C(1)–C(12)–N(2) 116.8(3), C(12)–N(2)–Zn(1)

121.1(2), C(12)–N(2)–C(17) 126.4(3), C(2)–C(1)–C(12) 105.9(3), C(1)–

C(12)–C(10) 105.9(3), C(10)–C(11)–C(2) 114.4(3), C(11)–C(2)–C(1)

105.9(3).
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m(Mo-Ka) = 0.068 mm21, T = 153(2) K, 1986 independent reflections
(Rint = 0.0438), final R indices (206 parameters) for 1986 independent
reflections [I > 2s(I)] are R1 = 0.0465, wR2 = 0.1008, GOF = 1.082. For
2: C32H36N2, triclinic, P1̄, a = 9.965(5), b = 11.003(5), c = 11.964(5) Å,
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